Printed Pages: 4

EEC-609

(Following Paper ID and Roll No. to be filled in your Answer Book)					
PAPER ID : 121601					
Roll No.	Ļ		П		

B. Tech.

(SEM. VI) THEORY EXAMINATION, 2014-15

Time: 3 Hours]

[Total Marks: 100

Note: Answer all the questions.

1 Answer any four parts:

 $5 \times 4 = 20$

- (a) Explain the working of Phase shift method for SSB-SC generation with block diagram. Draw the spectrum of SSB-SC.
- (b) Derive an expression for effective modulation index of a multi tone modulated A.M.
- (c) The equation of an A.M. wave is $x(t) = 100 [1+.2\cos(6280t)] \cos(2\pi x 10^6 t)$ find all the frequency present.
- (d) Define vestigial side band modulation. Describe the working of frequency discrimination method for VSB generation and calculate the bandwidth of VSB modulation.
- (e) Describe briefly the operation of super heterodyne receiver with proper block diagram. What is drawback of tuned radio frequency receiver?

2 Answer any four parts:

- $5 \times 4 = 20$
- (a) A single tone FM is represented by the voltage equation as $v(t) = 25\cos[9x10^7 t + 5\sin1650 t]$. Find the following:
 - (i) Carrier frequency
 - (ii) Modulating Frequency
 - (iii) Modulation index
 - (iv) Maximum deviation
- (b) What is the difference between direct and indirect methods of FM generation? Explain the working of varactor diode method for FM generation.
- (c) Define signal to noise ratio and noise figure of a receiver. Derive a relation between noise figure and equivalent noise temperature.
- (d) Two resistors 20 k ohm and 50 k ohm are at room temperature. Calculate the thermal noise voltage, for bandwidth of 100 kHz.
 - (i) For two resistors in series.
 - (ii) For two resistors in parallel.
- (e) Write comparison between A.M. and F.M. and derive the equation for F.M. wave.
- 3 Answer any two parts:

 $10 \times 2 = 20$

(a) In what way a pulse code modulation in different from other modulation system. What makes it a digital system? What are the advantages and application of PCM?

- (b) Describe delta madulation systems. What are its limitations? How can they be overcome? Compare it with differential PCM.
- (c) Write short nôtes on-
 - (i) Granularity & slope-overload error in delta modulation.
 - (ii) Non uniform quantization and its applications.
- (d) A Television signal having a bandwidth of 4.2 MHz is transmitted using binary PCM system. Given that the number of quantization levels is 512. Determine:
 - (i) Code ward length.
 - (ii) Transmission Bandwidth
 - (iii) Final bit rate
 - (iv) Output S/N ratio.
- 4 Answer any two parts:

 $10 \times 2 = 20$

- (a) Explain the working of the coherent ASK receiver and obtain the expression for probability of error,
- (b) Draw the block diagram of Transmitter and Receiver of BPSK. Explain its working-and also calculate probability of error.
- (c) Why FSK is preferred over ASK? Give reason, How FSK is generated and obtain the expression for its bandwidth. Briefly discuss regarding its frequency spectrum.

5 Answer any two parts:

10×2=20

- (a) Design binary Huffman code for a discrete source of five independent symbols A, B, C, D and E with probabilities 0.4, 0.2, 0.3, 0.08 and 0.02 respectively such that the variance of code word length is minimum.
- (b) Consider a sequence of symbols generated by a source with their probabilities of occurrence as given below

S 1 S2 **S3 S6** Symbol **S4 S5 S7 S8 S9** Probability 0.22 0.190.15 0.12 0.08 0.06 0.06 0.07 0.05

Determine the code words of the symbols using Shannon-Fano coding technique. Also determine the average code word length.

(c) Define information and entropy. Find an expression for the channel capacity of a continuous channel.